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ABSTRACT ogy from 1984-1987 and provided the key software personnel for
CCPDS-R startup.

TRW's Ada Process Model has proven to be key to the Com-
mand Center Processing and Display System-Replacement The CCPDS-R architecture consists of approximately 300 tasks
(CCPDS-R) project's success to date in developing over 300,000 executing in a network of 10 VAX family processors with over
lines of Ada source code executing in a distributed VAX VMS 1,000 task-to-task software interfaces. This large distributed net-
environment, work was developed primarily on the VAX Ada environment

augmented with a Rational RI000 host. Currently, CCPDS-R is
The Ada Process Model is, in simplest terms, a uniform applica- immersed in formal testing of most of the software builds with
tion of incremental development coupled with a demonstration- thc last build still in development. To date, the software effort
based approach to design review for continuous and insightful (75 people) has flowed smoothly on schedule and on budget.
thread testing and risk management. The use of Ada as the life-
cycle language for design evolution provides the vehicle for uni- Conventional Software Process Shortfalls
formity and a basis for consi'tent software progress metrics. This
paper provides an overview of the techniques and benefits of the All large software products require multiple people to converge
Ada Process Model and describes some of the experience and individual ideas into a single solution for a vaguely stated prob-
lessol.e learned to date. lem. The real difficulties in this process are twofold:

1. Convergence of individual solutions into an integrated prod-

Project Background uct implies that multiple people must communicate capably.

2. Vaguely stated problems stem from the use of ambiguous
The Command Center Processing and Display System-Replace- human communication techniques (e.g., English) as well as
ment (CCPDS-R) project will provide display information used numerous unknown criteria at the time of requirements
during emergency conferences by the National Command definition.
Authorities; Chairman, Joint Chiefs of Staff; Commander in
Chief, North American Aerospace Command; Commander in Conventional methods of software engineering focused on
Chief, United States Space Command; Commander in Chief, explicit separation of the problem (requirements), the abstract
Strategic Air Command, and other nuclear-capable commanders solution (design), and the final product (code and documenta-
in chief. It is the missile warning element of the new Integrated tion). No single representation format was suitable for require-
Tactical Warning/Attack Assessment system architecture devel- ments and design, or design and code, or all three. The tools
oped by North American Aerospace Defense Command/Air supporting these phases were very different, and the cost of
Force Space Command. change increased exponentially from one phase to the next. This

lack of evolving flexibility forces the industry into a mode of
The CCPDS-R project is being procured .by Air Force Systems "perfecting" one phase prior to the next; hence, no design was
Command Headquarters, Electronic Systems Division (ESD) at permitted until requirements were baselined and no coding was
Hanscom AFB and was awarded to TRW Defense Systems permitted until the design was baselined, etc.
Group in June 1987. TRW will build three subsystems. The first,
identified as the Common Subsystem, is 27 months into develop- The inherent problem with different representation formats for
ment. The Common Subsystem consists of over 300,000 source the products of each phase is that translation, interpretation,
lines of Ada with a development schedule of 38 months. It will and communication in transitioning to the next phase is very
be a highly reliable, real-time distributed system with a sophisti- error prone. "Representers" were frequently not the "transla-
cated user interface and stringent performance requirements tors" throughout the life cycle and basic intentions were often
implemented entirely in Ada. CCPDS-R Ada risks were origi- corrupted. Furthermore, the evaluation of each intermediate
nally a very serious concern. At the time of contract definition, phase was typically based on paper review, simulation, and for
Ada host and target environments and Ada-trained personnel the most part, engineering judgment and conjecture. Given a
availability were questionable. complex software system, there are far too many subtle interac-

tions, miscommunications, and complex relationships to predict-
The genesis of the Ada Process Model was a TRW Independent ably achieve quality design verification without actually building
Research and Development project which pioneered the technol- subsets of the product and getting factual feedback. The "real"
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evaluation of goodness occurred very late in conventional pro- permits prioritized management of risks. The dominant
grams when components were integrated and executed in the mechanism for achieving this goal is a disciplined approach to
target environment together for the first time. This usually incremental development. The key strategies inherent in this
resulted in excessive rework and caused late "shoehorning" of approach are directly aimed at the three main contributors to
less than desirable solutions into the final product. These late, software diseconomy of scale: minimizing the overhead and
reactive changes resulted in added fragility and reduced product inaccuracy of interpersonal communications, eliminating re% Nrk
quality. and converging requirements stability as quickly as possible in

the life cycle. These objectives are achieved by:
Figure 1 identifies the result of a typical conventional project
when integration of components is delayed until late in the life 1. Requiring continuous and early convergence of individual
cycle: substantial rework. The figure plots "Development Pro- solutions in a homogeneous life-cycle language (Ada).
gress" against schedule. Development progress here is defined to
be the percentage of the software product coded, compiled, and 2. Eliminating ambiguities and unknowns in the problem state-
informally tested in its target language (i.e., demonstrable). Al- ment and the evolving solution as rapidly as practical through
though conventional projects operated under the guise "no cod- prioritized development of tangible increments of capability.
ing prior to CDR," we have displayed the conventional project's
development progress assuming some standalone prototypes are Although many of the disciplines and techniques presented
done prior to CDR and that much of conventional Program herein can be applied to non-Ada projects, the expressiveness of
Design Language (PDL) is directly translatable into the target Ada as a design and implementation language and support for
language (i.e., demonstrable). In the figure, the conventional partial implementation (abstraction) provide a strong platform
project is characterized by: an early PDR supported by small for implementing an effective, uniform approach.
prototypes and a foreign PDL, no substantial coding until after
CDR, risk management by conjecture, paper design reviews, Many of the Ada Process Model strategies (summarized in Fig-
protracted integration, and unlikely adherence to the planned ure 2) have been attempted, in part, on other software develop-
completion schedule. ment efforts; however, there are fundamental differences in this

approach with respect to conventional software development
CCPDS-R is characterized in Figure I by a later PDR with a models.
more tangible definition of what constitutes a preliminary
design, demonstrations of incremental capabilities coupled with Uniform Ada Life-Cycle Representation
each design review, continuous integration during the design
pnase rather than the test phase, systematic risk management The primary innovation in the Ada Process Model is the use of a
based on factual early feedback, and a higher probability of single language for the entire software life cycle, including, to
meeting an end-item schedule with a higher quality product. some degree, the requirements phase. All of the remaining tech-

niques rely on the ability to equate design with code so that the
Ada Process Model Goals only variable during development is the level of abstraction. This

provides two essential benefits:
TRW's Ada Process Model recognizes that all large, complex
software systems will suffer from design breakage due to early 1. The ability to quantify units of software (design/develop-
unknowns. It strives to accelerate the resolution of unknowns ment/test) work in one dimension, Source Lines of Code
and correction of design flaws in a systematic fashion which (SLOC). While it is certainly true that SLOC is not a perfect
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Process Model Strategy Conventional Counterpart
Uniform Ada Lifecycle Representation = PDL/HOL
Incremental Development = Monolithic Development
Design Integration == Integration and Test
Demonstration Based Design Review Documentation Based Design Review
Total Quality Management Quality by Inspection

Figure 2. New Techniques vs. Conventional Techniques

aisolute measure of software, with consistent counting rules tions) from runtime function (bodies). The Ada Process Model
131, it has proven to be the best normalized measure and expands this concept by requiring structural design (SAS) prior
pravides an objective, consistent basis for assessing relative to runtime function (executable threads). Demonstrations pro-
trendE across the project life cycle. vide a forcing function for broader runtime integrai-,. iu aug-

ment the compile time integration enforced by the Ada
2. A formal syntax and semantics for life-cycle representation language.

with automated verification by an Ada compiler. Ada compi-
lation does not provide complete verification of a compo- Demonstration-Based Design Review
nent. It does go a long way, however, in verifying config- Many conventional projects built demonstrations or benchmarks
uration consistency and ensuring a standard, unambiguous of standalone design issues (e.g., user system interface, critical

algorithms, etc.) to support design feasibility. However, the

Incremental Development design baseline was represented on paper (PDL, simulations,
flowcharts, vugraphs). These representations were vague, ambig-

Although risk management through incremental development is uous and not amenable to configuration control. The degree of
emphasized as a key strategy of the Ada Process Model, it was freedom in the design representations made it very difficult to
(or always should have been) a key part of most conventional uncover design flaws of substance, especially for complex sys-
models. Without a uniform life-cycle language as a vehicle for tems with concurrent processing. Given the typical design review
incremental design/code/test, conventional implementations of attitude that a design is "innocent until proven guilty," it was
incremental development were difficult to manage. This manage- quite easy to assert that the design was adequate. This was
ment is highly simplified by the integrated techniques of the Ada primarily due to the lack of a tangible design representation
Process Model [8). from which true design flaws were unambiguously obvious.

Under the Ada Process Model, design review demonstrations
Design Integration provide some proof of innocence and are far more efficient at

In this discussion, we will take a simpleminded view of "design" identifying and resolving design flaws. The subject of the design

as the partitioning of software components (in terms of function review is not only a briefing which describes the design in human

and performance) and definition of their interfaces. At the high- understandable terms but also a demonstration of important

est level of design we could be talking about conventional aspects of the design baseline which verify design quality (or

requirements definition; at the lowest level, we are talking about lack of quality).

conventional coding. Implementation is then the development of Total Quality Management
these components to meet their interface while providing the
necessary functional performance. Regardless of level, the activ- In the Ada Process Model there are two key advantages for
ity being performed is Ada coding. Top-level design means cod- applying TQM. The first is the common Ada format throughout
ing the top-level components (Ada main programs, task the life cycle, which permits consistent software mctrics across
executives, global types, global objects, top-level library units, the software development work force. Although these metrics do
etc.). Lower-level design means coding the lower-level program not all pertain to quality (many pertain to progress), they do
unit specifications and bodies. permit a uniform communications vehicle for achieving the

desired quality in an efficient manner.
The postponement of all coding until after CDR in conventional
software development approaches also postponed the primary Secondly, the demonstrations serve to provide a common goal
indicator of design quality: integrability of the interfaces. The for the software developers. This "integrated product" is a
Ada Process Model requires the early development of a Software reflection of the complete design at various phases in the life
Architecture Skeleton (SAS) as a vehicle for early interface defi- cycle for which all personnel have ownership. Rather than indi-
nition. The SAS essentially corresponds to coding the top-level vidually evaluating components which are owned by individuals,
components and their interfaces, compiling them, and providing the demonstrations provide a mechanism for reviewing the
adequate drivers/stubs so that they can be executed. This early team's product. This team ownership of the demonstrations is an
development forces early baselining of the software interfaces to important motivation for instilling a TQM attitude.
best effect smooth development, evaluate design quality early,
and avoid/control downstream breakage. In this process, we
have made integration a design activity rather than a test activity. Incremental Development
To a large degree, the Ada language forces integration through
its library rules and consistency of compiled components. It also Incremental development is a well-known software engineering
supports the concept of separating structural design (specifica- technique which has been used for many years 0 1,121. The Ada
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Process Model simply extends the discipline of incremental The paramount advantage of Ada in supporting incremental
development into three dimensions: development is its support for partial implementations. Separa-

tion of specifications and bodies, packages, powerful data typ-
Subsystem Increments, called builds, are selected subsets of ing, and Ada's expressiveness and readability are features which

software capability which implement a specific risk management can be exploited to provide an t.fective development approach
plan. These increments represent a cross section of components and insightful development pro-ress metrics for continuous
which provide a demonstrable thread of capability. Integration assessment of prrject health from multiple perspectives. These
across builds is mechanized by constructing major milestone development progress metrics are described later in this paper
(SSR, PDR, CDR) demonstrations of capabilities which span and in 181.
multiple builds.

Figure 3 is an overview of a generic definition of project
Build Increments, called design walkthroughs, are sets of "builds" for insightful risk management. This definition has

partially implemented components within a build which permit been abstracted from CCPDS-R experience where a similar build
evolutionary insight into the allocated build components' struc- content/schedule has been extremely successful. The key fea-
ture, operation, and performance as an integrated set. Integra- tures of the proposed build definition are:
tion of components within builds is mechanized by constructing
small scale design walkthrough (PDW and CDW) demonstra- Risk Management
tions composed of capabilities which span multiple components.

Planning the content and schedule for each of the builds is
Component Increments, called Ada Design Language, or perhaps the first and foremost risk management task. This activ-

ADL, are partial implementations of Ada program units main- ity essentially will define the risk management plan for the pro-
tained in a compilable Ada format with placeholders for pend- ject. The importance of a good build content and schedule plan
ing design detail. Integration of Ada program units is enforced cannot be overemphasized, the efficiency of the software devel-
to a large degree through compilation. opment depends on its initial quality and the ability for the
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project to react to changes as the development progresses. The we are prescribing that this level be the set of interfaces which
last point is important (as we have learned on CCPDS-R) are inherent in the Software Architecture Skeleton. The purpose
because of the need to adjust build content and schedule as more of this concurrency is twofold: to ensure that the requirements
accurate assessments of complexity, risk, personnel, and value are validated (to some degree) by a design representation and to
engineering are achieved. Applying the underlying theory of this eliminate ambiguities and identify holes in the requirements
process model, the incremental development of the risk manage- through experience in constructing the candidate solution's
ment plan must also provide some flexibility during the early structure. This approach explicitly admits that the difference
builds as conjecture starts evolving into fact. between requirements and design is a subtle one. The extent to

which a project defines its software requirements will depend on
Pioneering an Early Build both contractor and customer desires. The purpose of this

approach is not to define that extent, but rather to provide
The first build is identified in the figure as the foundation com- enough early information in both the design and requirements
ponents. This build is critical to the Ada Process Model for two representations to converge on an SRS baseline which is suitable
reasons: it must provide the prerequisite components for smooth to both parties. This subject is treated further in 151.
development as well as a vehicle for early prototyping of the
development process itself. There are always components which Software Architecture Skeleton (SAS)
can be deemed "mission requirements independent" that fall
into the category of foundation components. The concept of a software architecture skeleton (SAS) is funda-

mental to effective evolutionary development. Although differ-
The foundation software build represents components which are ent applications domains may define the SAS differently, it
likely to be depended on by large numbers of development per- should encompass the declarative view of the solution which
sonnel. Their early availability, usage, feedback, and stabiliza- identifies all top-level executable components (Ada Main Pro-
tion represent a key asset in avoiding downstream breakage and grams and Tasks), all control interfaces between these compo-
rework. nents, and all type definitions for data interfaces between these

components. Although a SAS should compile, it will not neces-
The second purpose of this build is to provide a guinea pig for sarily execute without software which provides data stimuli and
exercising the process to be used for the subsequent mainstream responses. The purpose of the SAS is to provide the structure/
builds. The existence of this early pioneer build on CCPDS-R interface baseline environment for integrating evolving compo-
was key to uncovering inefficiencies in the standards, procedures, nents into demonstrations. The definition of the SAS (Figure 4)
tools, and techniques in a small scale where breakage was con- represents the forum for interface evolution between compo-
trollable and incorporating improvements and lessons learned in nents. In essence, a SAS provides only software potential energy:
time to support later builds more efficiently. This "incremental a framework to execute and a definition of the stimulus/re-
development" of the process itself is important until the process sponse communications network. Software work is only per-
matures into a truly reusable state itself, formed when stimuli are provided along with applications

components which transform stimuli into responses. If an ex-
Requirements/Design Concurrence plicit subset of stimuli and applications components are pro-

vided, a system thread can be made visible. The incremental
An interesting aspect of the proposed build sequence is the con- selection of stimuli and applicntions components constitutes the
currency of requirements definition and the Software Architec- basis of the build a little, test a little approach of the Ada
lure Skeleton (SAS) build. This concurrency ensures Process Model. It is important to construct a candidate SAS
design/requirements consistency at the interface level described early, evolve it into a stable baseline, and continue to enhance,
in the Software Requirements Specifications (SRS). In general, augment, and maintain the SAS as the remaining design evolves.

Partitioning Inteption Implemen"taion

Figure 4. SAS Definition

In Figure 4, the symbols could take on different meanings de- tioning (existence of processing objects) to integration (defini-
pending on the object being defined. For example, the larger lion of inter-object behavior) to implementation (completion of
boxes could represent Ada main programs, tasks, or subpro- all object abstractions) in a compilable Ada format. This evolu-
grams. The smaller boxes tagged to interface lines could repre- tion should occur in a combination of breadth-first and depth-
sent types, packages of types, or other objects. The important first design activities which best match the risk management
message of the figure is that all SAS objects evolve from parti- plan of the project.
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The PDR Milestone which identifies the capabilities planned to be demonstrated,
how the capabilities will be observed, and explicit pass/fail crite-

In Figure 3, the Preliminary Design Review (PDR) takes on a ria. Pass/fail criteria should be defined as a threshold for gener-
different meaning than in conventional process models. In the ating an action item; they need not be derived directly from
context of the Ada Process Model, PDR is the review and formal requirements. The pass/fail criteria should trigger an action
baselining of the SAS. The PDR reviews this candidate baseline based on exceeding a certain threshold of concern as negotiated
with a supporting demonstration of some capability subset exer- by the responsible engineering authorities for both contractor
cising the SAS to the extent that the structure can be deemed an and customer.
acceptable baseline. The definition of the capability subset to be
demonstrated at PDR is application dependent, but certainly With early demonstrations (whether on the target hardware or
should include the potential performance drivers (in space, time, host environment), significantly more accurate assessments of
throughput, or whatever), risky functional implementations, and performance issues can be obtained and resolved inexpensively.
design breakage drivers (i.e., components which are "withed" by An important difference in the Ada Process Model, however, is
many other components). With the exception of the SAS, PDR that these demonstrations may tend to start out showing per-
has been intentionally defined generically, to be instantiated ap- formance issues as immature designs are assessed. Whereas tra-
propriately for each project. ditional projects started out with optimistic assessments that

matured into problems, this approach may start pessimistic and
Conventional software PDRs define standards for review topics mature into solutions.
that result in tremendous breadth of review, with only a minimal
amount that is really important or understood by the large, Build Chronology
diverse audience. Revie, ing all requirements in equal detail at a
PDR is inefficient and unproductive. Not all requirements are The individual milestones within a build need to be integrated

created equal; some are critical to design evolution, some are into (or flowed down from) the higher-level project milestones.

don't cares. The Ada Process Model attempts to improve the There is a tradeoff between the number of builds and the inte-

effectiveness of design review by allocating the technical soft- gration of concurrent build activities into a higher-level mile-
ware review to smaller scale design ,valkthroughs and focusing stone plan. In general, an increased number of builds provides

the major milestone reviews on the globally important design for more detailed development risk control. However. it also

issues. Furthermore, focusing the design review on a demonstra- increases the management overhead and complexity of schedul-

tion provides a more understandable representation of design ing concurrent builds, managing personnel, and supporting an

perspectives for the diverse PDR audience (procurement, user, increased number of design walkthroughs. For any given project,

technical assistance personnel), most of whom are not familiar these criteria need to be carefully evaluated. As general lessons
with Aua or detailed software engineering tradeoffs. learned, CCPDS-R defined small but complex early builds

where detailed technical control and insight were necessary, and

Demonstrations as Primary Products larger, less complex, later builds where the management focus
was on production volume rather than on technical risks.

Traditional software developments under the current Military
Standards focus on documentation as intermediate products. To Within an individual build (Figure 5), a well-defined sequence of
some extent, this is certainly useful and necessary [61. However, design walkthroughs takes place, Design walkthroughs are infor-
by itself it is inadequate for large systems. Fundamental in the mal, detailed technical peer reviews of intermediate design prod-
Ada Process Model is forcing design review to be more tangible ucts with attendance by interested reviewers including other
via visibly demonstrated capabilities. These demonstrations serve designers, testers, QA, and customer personnel. Typically, the
two key objectives: audience is restricted to a small knowledgeable group. However,

other attendance is useful for the purposes of training. On
I. The generation/integration of the demonstration provides CCPDS-R, design walkthrough attendance averaged 20-30 peo-

tangible feedback on integrability, flexibility, performance, pIe. Design walkthroughs must be informal and highly interac-
interface semantics, and identification of design and require- tive with open critique. A contractor or customer who forces too
ments unknowns. It satisfies the software designer/developer much formality into the walkthrough process will slow down the
by providing first hand knowledge of the impact of individual design evolution, or stifle the openness of raising issues; both are
design decisions and their usage/interpretation by others. The counterproductive (e.g., dry runs should be unnecessary). Like-
generation of the demonstration is the real design review, wise, followthrough must be effective and timely to maintain
This activity has proven to provide the highest return on development continuity and capture issue resolution. Design
investment in CCPDS-R by uncovering design interface defi- walkthrough standards for format and content are needed early
ciencies early. and should be evolved with experience.

2. The, finished demonstration provides the monitors of the Initial prototyping and design work is iterated primarily for the
development activity (users, managers, customers, and other purpose of presenting a Preliminary Design Walkthrough
indirectly involved engineering performers) tangible insight (PDW) and associated capability demonstration. The focus of
into functionality, performance, and development progress. the PDW should be on reviewing the structure of the compo-

One sees an executing Ada implementation of understandable nents which make up the build., with the demonstration focused
and relevant capability subsets. on integrated components in an environment which exercises

intercomponent interfaces in a visible manner. In simple terms,
On CCPDS-R, lessons learned from informal design walk- the PDW is focusing on a review of the declarative view of the

through demonstrations are tracked via action items. For major components with enough executable capability to evaluate the

milestone demonstrations, a demonstration plan is developed goodness of the structure and interfaces.
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Figure 5. Incremental Development within a Build

Following the PDW, design lessons learned from both the PDW planned software maintenance time. Although substantial infor-
and the demonstration (tracked via informal action items on mal testing occurs as a natural by-product of demonstration
CCPDS-R) are incorporated into the evolving components, and development, it is by no means complete, nor is it intended to
further refinements of the design are performed en route to a demonstrate requirements satisfaction. Software test under this
Critical Design Walkthrough (CDW). The focus of the CDW Process Model includes:
should be on reviewing the operation of the components which
make up the build, with the demonstration focused on integrated SAT. Standalone Test is an integrated set of Ada program
components in an environment which exercises intercompontnt units (typically a complete library unit) tested in a stand-
performance in a visible manner. The CDW is focusing on a alone environment. This level of testing corresponds to com-
review of the executable view of the components with enough pleteness and boundary condition testing to the extent possible
capability to evaluate the performance of the integrated compo- in a standalone environment prior to delivery as a configuration
nent subset. CDW demonstrations should be defined so that the baseline. Most SATs are informal in that they do not verify
important aspects of execution performance are visible (e.g., requirements, however, requirements verification in a standalone
space, response time, accuracy, throughput, etc.), and the subset test (e.g., algorithm accuracy) can be performed after the com-

of partial implementations provides coverage of the components ponents are installed into a controlled configuration baseline.
expected to be drivers in any performance criteria of interest.

BIT. Where conventional projects typically suffer extensive
The next phase is to incorporate the action items from CDW and design breakage during integration, build integration testing in
the CDW demonstration's lessons learned into the build compo- the Ada Process Model is straightforward and rapid. It is essen-
nents, ajid refine and enhance those components into complete tially a regression test of previous demonstrations which should
implementations. These components are then standalone tested have resolved the major interface issues. It is still a necessary
for complete coverage of allocated requirements and boundary step, however, since it corresponds to the "Quality Evaluation"
coriitions in preparation for delivery to an independent test associated with installation of a standalone tested configuration
team. These informal tests perform the lowest levels of inte- baseline. BIT serves to validate that the previously demonstrated
grated test so that complete library units are turned over for threads can be repeated, that previously defined deficiencies
formal requirements verification tests. Note the use of the term have been fixed, and that the configuration installation does not
"integrated test" which implies that most integration has break any previous configurations. Furthermore, it does provide
occurred in the process of providing working demonstrations. completeness of interface exercise not provided in the
One still must account for some future integration effort, how- demonstrations.
ever, since incorporation of action items and demonstration les-
sons learned could result in interface breakage which must be EST. Engineering String Tests represent test cases which are
re-integrated, focused on verifying specific subsets of requirements from possi-

bly multiple CSCIs through demonstration and test of capability
The final activity is the process of software turnover where the threads.
standalone tested units are placed under configuration control.
These activities must be carefully planned so that the intercom- FQT. Formal Qualification Tests require a complete soft-
ponent dependencies within a build are accommodated in the ware subsystem for requirements verification. For example, a
turnover sequence. The build integration test phase (described requirement such as "50% reserve capacity" cannot be verified

below) is conducted during the turnover activity as an informal until all components are present. The subject of this incremental
verification of configuration consistency, interface integrity, and test approach is treated more fully in (71.

standalone test completeness. These activities are logically just
regression tests of previous demonstrations to ensure that all Ada as a Design Language
previously identified issues have been rectified and previously
untested interfaces are accounted for prior to formal testing. The use of compilable Ada as a Design Language (ADL) is one

of the primary facets of the Ada Process Model which provides

Incremental Test uniformity of representation format. As will be described in the
next section, the uniformity and Ada/ADL standards permit

Another benefit of this process model is the partitioning of the insight via software development progress metrics. Note that the

software into manageable increments for software test with terms Ada and ADL are virtually interchangeable with respect to
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our usage standards, the standards which apply to our final Ada plete). Program units or statements which have no references to
productc are the same as those that apply to earlier design repre- TBD objects are identified as "Ada" (i.e., complete) for the
sentations. This approach best supports our technique of evolv- purposes of metrics collection.
ing designs into implementations without translating between
two sets of standards. Figure 6 shows A typical transition of ADL to Ada for a specific

library unit from CCPDS-R. Although this evolution identifies a
The foundation of Ada Design Language is the use of Ada, fairly uniform transition to Ada across all program units at
comments, and predefined TBD Ada objects to evolve a continu- PDW and CDW, a more typical evolution would have more
ously compilable design representation from a high-level abstrac- individual program units being 100 percent complete while oth-
tion into a complete Ada implementation. ADL statements are
Ada statements which contain placeholders from the predefined ers being essentially zero percent complete. In other words, most
set of TBD Ada objects. A package called TBDTypes defines designers on CCPDS-R tend to focus on completing sets of

TBD types, TBD constants, TBD values, and a TBD procedure individual program units rather than portions of all program

for depicting statement counts associated with comments which units. Given the flexibility of Ada packaging and structure, ei-

together act as placeholders for TBD processing. ther technique has proven to be equally useful and should be left
as designer's choice. However, the general transition trend has

The use of objects from package TBDTypes constitutes a pro- still been approximately 30 percent done by PDW, 70 percent
gram unit or statement being identified as "ADU' (i.e., incom- done by CDW, and 100 percent done by Turnover.

Program Unit Type Ada ADL Cpix Total %
lnm-Erm-Procedures TLCSC 8 122 4.0 128 4.7

Package 2 122 4.0 124 1.6
Create-nm-ErmCircuits Proc 1 0 3.0 1 100.0
Perform-Reco n flg uration Proc 1 0 4.0 1 100.0

Initial Perform-Shutdown Proc 1 0 3.0 1 100.0
View Process.ErrorMessages Proc 1 0 4.0 1 10U.0

lnm-Erm-Procedres TLCSC 47 101 3.9 148 31.8
Package 24 19 4.0 43 55.8

All-NodeConnections Proc 3 19 4.0 22 13.6
PDW CreateJnmErmCircuits Proc 4 8 3.0 12 33.3
View On-NodeConnections Proc 3 7 4.0 10 30.0

Perform-Reconflgu ration Proc 8 2 4.0 8 75.0
Perform-Shutdown Proc 4 3 3.0 7 57.1
Process-ErrorMessges Proc 3 43 4.0 46 6.5
lnm-ErmProcedures TLCSC 87 48 3.9 135 64.4

Package 30 11 4.0 41 73.2
AllNodeConnections Proc 18 0 4.0 18 100.0

CDW CreateJnmErmCircuits Proc 8 4 3.0 12 86.7
View Un-Nodc..,onnections k'roc 9 0 4.0 9 100.0

Perform.Recon fl gu ration Pror 8 2 4.0 8 75.0

Perform.Shutdown Proc 8 1 3.0 7 85.7
Process..ErrorMessages Proc 12 30 4.0 42 28.6
Inm-ErmProcedures TLCSC 137 0 3.9 137 100.0

Package 42 0 4.0 42 100.0
All-NodeConnections Proc 18 0 4.0 18 100.0
Create-InmErm_.Circuits Proc 12 0 3.0 12 100.0

Turnover OnNodeConnections Proc 9 0 4.0 9 100.0
View Perform.Reconflgu ration Proc 8 0 4.0 I100.0

Perform-Shutdown Proc 7 0 3.0 7 100.0
Process.Error.Messa~es Proc 43 0 4.0 43 100.0

Figure 6. Incremental Development within a Component: ADL

Software Metrics automatically. Figure 7 identifies example statistics which are
produced by CSCI, by CSCI build, by build, and by subsystem.

One of the by-products of our definition of ADL is the uniform The metrics collection process is performed monthly for dctailed
representation of the design with a complete estimate of the management insight into development progress, code growth,
work accomplished (source lines of Ada) and the work pending and other indicators of potential problems (81.
(source lines of ADL) embedded in the evolving source files in a
compilable format. Although the Ada source lines are not neces- The monthly metrics are collected by build, and by CSCI so that
sarily complete (further design evolution may cause change),
they do represent an accurate assessment of work accomplished, high-level trends and individual contributions can be assessed.
Given this life-cycle standard format, the complete set of design Individual CSCI managers collect their metrics and assess their
files can be processed at any point in time to gain insight into situation prior to incorporation into project-level views and are

development progress. On CCPDS-R, a metrics tool was devel- held accountable for monthly explanations of anomalous cir-

oped which scans Ada/ADL source files and compiles statistics cumstances.
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CSCI progress, Build progress, and Subsystem progress are also

NAS CSCI Metrics (Month 10) consistent. The software management team can assess trends

Designed Coded Total early, identify potential problems early, and communicate with

TLCSCS 39 33 40 higher-level management and customer personnel in an objective
manner. This definition of development progress makes the de-

LLCSCs 13 10 13 velopment effort more tangible so that decision making and

Units 484 459 494 management can be based on fact rather than conjecture.

ADL Adai Total CCPDS-R Experience
SLOG 1858 16636 I 18494Fs__'L____ 1858_16636_1_18494 At the time of this writing CCPDS-R is in month 27 of develop-

% Coded T 90.0% ment. Five out of six builds have been developed and are cur-
rently maintained in a configuration-controlled baseline. This

CPLX T -3.8 represents about 97 percent of the tutal Common Subsystem
product being developed, integrated, and standalone tested. We

Figure 7. Summary Metrics for CSCI are currently immersed in the formal requirements verification
activities. As displayed in Figure 8, the design and development

This process provides objectivity, consistency, and insight into has flowed smoothly as planned, and there is a high probability
progress assessment. Although the lowest level assessments of of finishing on schedule, and on budget. Thv program is cur-
ADL statements are certainly still somewhat subjective, they are rently about 3 months past "System CDR." This is misleading,
determined by the most knowledgeable people, the designers, however, since contractually we were required to hold CDR after
and are therefore more likely to be accurate. Furthermore, the our final build's CDW. The success of CCPDS-R to date under
CSCI manager assesses his own situation based on the combined the Ada Process Model described in this paper has not been
influence of his design team communicating to him in a uniform easily attained. There has been high commitment on the part of
format. rhis consistency is even more valuable to the software the CCPDS-R project team, the CCPDS-R customer, and TRW
management team since all of the responsible managers are corn management to make sure that the process was followed and that
municating progress in the same language and the assessment of lessons learned were incorporated along the way.

Des.9ned/Coded (7 Complete) 1plan o

100 Actual ...
90 % of Legend
80 SLOC
70 0 KSLOC Standalone TestedSo .. .. too -
o 75.. - ,

40

30 so .20 25 i10 Ir __r~
5 t is 20 25 30 6 10 I 20 2S

tuntract Month Contract Month

Figure 8. Common Subsystem Development Progress
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